Synthesis of Metal Carbene Complexes from Diazirines

Penny A. Chaloner, Gary D. Glick, and Robert A. Moss

Department of Chemistry, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, 08903, U. S. A.

Reaction of **methoxy(pheny1)diazirine (1** a) with tungsten or chromium pentacarbonyl yields carbene complexes (2a) and **(2b)** by a mechanism not involving free carbene.

A variety of 3,3-disubstituted diazirines **(1)** are available and decompose thermally or by photolysis to yield carbenes which can be trapped by suitable alkenes.¹ Methoxy(phenyl)carbene

is well known in its metal complex form2 but few mononuclear metal carbenes have been prepared directly from *bona fide* carbene precursors. Diazo compounds displace tetrahydro-

furan (THF) from $(\eta^5-C_5Me_5)Mn(CO)_2THF$ to yield manganese carbenes *via* diazo complexes,³ and bis(phenylthio)carbene is trapped with low efficiency by $M(CO)_{5}THF$ ($M = W$, Cr) in reaction with $LiC(SPh)₃$.⁴

We now report the first synthesis of metal carbene complexes from diazirines. Photolysis of methoxy(phenyl)diazirine $(1a)^5$ in the presence of W(CO)₆ or Cr(CO)₆ at 0 °C (3 h, N₂ atm, G.E. Sunlamp) in hexane gave **(2a)** and **(2b)** in **I3** and 8 % isolated yields respectively.[†] Yields were based on bromo-(pheny1)diazirine **(lb)** which was converted into the more sensitive (1a) on treatment with methoxide.⁵ This reaction proceeded in less than 50% yield, so that the yields of carbene complexes relative to the proximate diazirine precursor **(la)** were at least twice the cited values. The diazirine and the metal hexacarbonyl have similar u.v. maxima $[\lambda_{\text{max}}]$ (1a) 368 and 383 nm,⁵ λ_{max} M(CO)₆ *ca.* 366 nm⁶], and the carbene complexes are photolabile, so that alternative thermal routes to **(2)** were sought.

The complexes $M(CO)_{5}THF$, formed on photolysis (366 nm, N_2 stream) of the hexacarbonyls in THF, are labile to substitution' and reacted in THF with **(la)** in a dark reaction (0 "C, *3* h) to give **(2a)** and **(2b)** in **14** and 8 % isolated yields. These yields were reduced to 4 and 2% at -20 °C. Either a reduced concentration of $M(CO)_{5}$ from dissociation or a lack of free carbene may have been responsible for the reduction.

To distinguish between a pathway involving the reaction of free methoxy(phenyl)carbene with $M(CO)_{5}$ or an insertion route involving the diazirine (Scheme 1), we required a reliable source of $M(CO)_{5}$. The most convenient was $M(CO)_{5}NH_{3}$, which could be purified readily and gave $M(CO)$ ₅ cleanly on photolysis $(\lambda > 370 \text{ nm})$ at 0 °C of a pentane solution in a stream of nitrogen.⁸ The $M(CO)$ ₅ fragment is relatively stable

(t_1 *ca.* 30 min at 25 °C) and reacted (pentane, 0 °C for 2 h, or 25 °C for 1 h) with **(1a)** to yield **(2a)** and **(2b)** in 16 and 11% isolated yields. Reduction of the temperature to -20 ^oC afforded identical yields of complexes. This **is** consistent with the insertion route of Scheme I, because the diazirine is thermally stable at -20° C. Insertion of certain metal complexes into azirines, with subsequent rearrangement, is well established 9,10 and the cyclic intermediate proposed in Scheme I has many analogies in the mechanisms demonstrated by alkene metathesis.

Various substituted diazirines are readily available¹ and further studies are underway to develop a general synthesis of metal carbene complexes.

We thank the National Science Foundation and the Rutgers University Research Council for support of this research. **We** are grateful to Prof. Mark Wrighton for helpful discussions.

Received, 23rd Mny 1983; Corn. 658

References

- **1** M. T. H. Liu, *Chem. Soc. Rev.,* 1982, **11,** 127.
- 2 E. **0.** Fischer, *Adv. Organomet. Chem.,* 1976, **14, 1.**
- 3 W. A. Herrmann, *Angew. Chem., Int. Ed. Engl.,* 1974, 13, 599; *Adv. Organomet. Chem.,* 1982, 20, 159.
- 4 H. G. Raubenheimer and H. E. Swanepoel, J. *Organomet. Chem.,* 1977, **141,** C21.
- 5 **J.** Wlostowska, R. **A.** Moss, W. Guo, and M. J. Chang, J. *Chem. Soc., Chem. Commun.,* 1982, 432.
- 6 M. Elian and R. Hoffmann, *Inorg. Chem.*, 1978, 14, 1058.
- 7 M. Wrighton, *Chem. Rev.,* 1974, **74,** 401.
- 8 W. Strohmeier, J. F. Gultenberger, **H.** Blumenthal, and *G.* Albert, *Chem. Ber.,* 1966, 99,'3419.
- 9 H. Alper and J. E. Prickett, *J. Chem. Soc., Chem. Commun.*, 1976, 483.
- 10 K. Isomura, K. Uto, and H. Taniguchi, J. *Chem. Soc., Chem. Commun.,* 1977, 655.

t Products **(2a)** and **(2b)** were isolated by chromatography on silica gel at 0 *"C* (degassed hexane), and identified by i.r., n.m.r., and t.1.c. comparisons wih authentic samples prepared by Fischer's route (ref. 2).